NIROSTA® 4116

Material no.

1.4116 to EN 10 088-2

Code names

D (DIN/EN) X 50 CrMoV 15 USA (ASTM) -

Japan

CIS

Chemical composition (in % by weight)¹⁾

	C	Cr	Mo	V
min.		14.0	0.5	0.1
max.		15.0	0.8	0.2

¹⁾ Special arrangements may be made within the analysis limits depending on the properties required.

Product forms

Hot-rolled wide strip, cold-rolled wide strip, slit strip, cut sheets, circles, blanks

Mechanical properties (transverse samples) at room temp.¹¹ to EN 10 088-2

Dimensions range	R _m (tensile strength) N/mm²	A ₅ (elongation) %	A ₈₀ (elongation) %	Hardness HB
Cold-rolled strip s ≤ 8 mm Hot-rolled strip s ≤ 13.5 mm	max. 850	≥ 12	≥ 12	≤ 280

²⁾ Hardened and tempered approx, 55 HRC. Calculating tensile strength from hardness is subject to wide fluctuations.

Heat treatment Hardened

Hardening temperature °C	Cooling	Microstructure
980 – 1050	Oil/air	Martensite (transformation structure)

Physical properties

Density kg/dm³	in kN/m	nm² at		300°C		Thermal between 100°C	400°C		
	20 °C	100 C	200 C	000 0	100 0	200		1	144.5
7.7	215	212	207	200	190	10.5	11.0	11.0	11.5

Thermal conductivity at 20 °C W/m · K	Specific heat capacity at 20 °C J/kg · K	Electrical resistivity at 20 °C Ω · mm²/m	Magnetisability
30	460	0,65	present

Surface finish

1 E (II a), 2 B (III c), 2 R (III d), 2 G (IV)

Edge finish

Untrimmed, cut edges, dressed edges on request

Metal Ravne Steel Selector

Alphabetical Steel Index Keyword Search Cold Work Tool Steel Hot Work Tool Steels Low Alloyed Tool Steels High Speed Steels Special Steels Alloyed Carbon Steels Unafloyed Carbon Steels Steel Standards Dimensional Sales Program About Steels Heat Treatment of Steels Java Calculators Download Steel Selector Contact Us Help Home

Steel PK5 (Mat.No. 1.4116*, DIN X50CrMoV15*, AISI 440A*)

Designation by Standards

Brand Name	Ravne No.	Mat. No.	DIN X50CrMoV15*	EN X50CrMoV15*	AISI 440A*
PK5	812	1.4116*	X50CrMoV15	VOOCHMOAIO	410/1

Chemical Composition (in weight %)

5	Si	Mn		Mo				Others
	max. 1.00	max, 1.00	14.50	0.65	-	0.15	-	-

Description

This is a high carbon martensitic stainless steel with moderate corrosion resistance good strength and the ability to obtain and keep excellent hardness (Rc 56) and wear resistance.

Ball bearings and races, gage blocks, molds and dies, cutlery, valve components, knives and measuring instruments. All kinds of cutting tools - surgical instruments, pressing dies for synthetic resin.

Physical properties (avarage values) at ambient temperature

Modulus of elasticity [103 x N/mm2]; 220

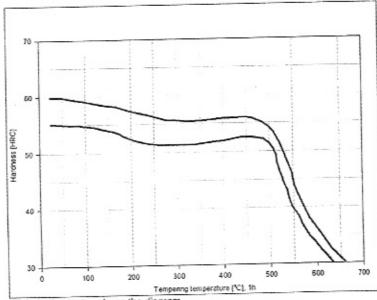
Density [g/cm3]: 7.7

Thermal conductivity [W/m.K]: 30.0 Electric resistivity [Ohm mm²/m]: 0.65 Specific heat capacity[J/g,K]: 0.46

Magnetisable: Yes

Coefficient of Linear Thermal Expansion 10⁻⁶ °C⁻¹

20-100°C	20-200°C	20-300°C	20-400°C	20-500°C
	77	11.0	11.5	12.0
10.5	11.0	11.0	,	


Soft Annealing

Heat to 730-780°C, cool slowly.

Harden from a temperature of 980-1030°C followed by oil or air quenching.

Tempering
Tempering temperature: Please see the diagram bellow.

Tempering Diagram

Click the image to enlarge the diagram.

Hot forming temperature: 1100-800°C.

Machinability

Best machined in the annealed condition. Tough, stringy chips can be best handled by the use of

Chemical resistance

Our publication "Chemical Resistance of NIROSTA" Steels" contains tables giving some guide to chemical resistance. NIROSTA® 4116 belongs to group 1 in the publication.

Processing

This material can be heat treated to achieve high strength values due to its high C content.

Heat tints or scale from heat treatment reduce corrosion resistance and should be removed chemically (e.g. pickling baths or pickling pastes) or mechanically (e.g. by grinding or blasting with glass beads or iron- and sulfur-free quartz sand). Machining is comparable to that of an unalloyed structural steel. Tools should be made of good quality high-speed steel or carbide.

NIROSTA® 4116 can be polished.

Welding

Weldability: NIROSTA® 4116 is not suitable for welding.

Applications

NIROSTA® 4116 is used for parts which are subject to wear, e.g. for high-quality table and kitchen knives, penknife blades and meat knives. Adding vanadium improves wear resistance. The addition of Mo improves corrosion resistance compared to standard martensitics.